
Unit 4 Event Handling
AWT (Abstract Window Toolkit):

AWT represents a class library to develop applications using GUI. The java.awt

package consists of classes and interfaces to develop GUIs.

Component: A component represents an object which is displayed pictorially on the screen

and interacts with the user.

Ex. Button, TextField, TextArea

Container: A Container is a subclass of Component; it has methods that allow other

components to be nested in it. A container is responsible for laying out (that is positioning) any

component that it contains. It does this with various layout managers.

Panel: Panel class is a subclass of Container and is a super class of Applet. When screen output

is redirected to an applet, it is drawn on the surface of the Panel object. In, essence panel is a

window that does not contain a title bar, menu bar or border.

1

Unit 4 Event Handling

Window: A window represents a rectangular area on the screen without any borders or title

bar. The Window class create a top-level window.

Frame: It is a subclass of Window and it has title bar, menu bar, border and resizing

windows.

Delegation Event Model:

The modern approach (from version 1.1 onwards) to handle events is based on the

delegation event model. Its concept is quite simple: a source generates an event and sends it

to one or more listeners.

In this scheme, the listener simply waits until it receives an event. Once an event is received,

the listener processes the event and then returns. The advantage of this design is that the

application logic that processes events is cleanly separated from the user interface logic that

generates those events.

A user interface element is able to “delegate” the processing of an event to a separate

piece of code. In the delegation event model, listeners must register with a source in order to

receive an event notification. This provides an important benefit: notifications are sent only to

listeners that want to receive them.

Events: An event is an object that describes a state change in a source. It can be generated as

a consequence of a person interacting with the elements in a GUI. Some of the

activities that cause events to be generated are pressing a button, entering a character

via the keyboard, selecting an item in a list, and clicking the mouse.

Event Sources: A source is an object that generates an event. Generally sources are

components. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive

notifications about a specific type of event. Each type of event has its own registration

method. Here is the general form:

public void addTypeListener (TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For

example, the method that registers a keyboard event listener is called addKeyListener().

2

Unit 4 Event Handling

A source must also provide a method that allows a listener to unregister an

interest in a specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Event Listeners: A listener is an object that is notified when an event occurs. It has

two major requirements.
1.It must have been registered with one or more sources to receive

notifications aboutspecific types of events.

2. It must implement methods to receive and process these notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event package.

Sources of Events:

Event Source Description

Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked;

Menu item
Generates action events when a menu item is selected; generates item

events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window
Generates window events when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.

Event Classes and Listener Interfaces:

The java.awt.event package provides many event classes and Listener interfaces for

event handling. At the root of the Java event class hierarchy is EventObject, which is in

java.util. It is the super class for all events. Its one constructor is shown here:

EventObject(Object src) - Here, src is the object that generates this event.

EventObject contains two methods:
getSource() - returns the source of the event.

toString() - toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of

EventObject. It is the superclass (either directly or indirectly) of all AWT-based events used

by the delegation event model. Its getID() method can be used to determine the type of the

event. The signature of this method is shown here:

int getID()
.

3

Unit 4 Event Handling

The package java.awt.event defines many types of events that are generated by various user

interface elements

Event Class Description Listener Interface
 Generated when a button is pressed, a list

ActionEvent item is double-clicked, or a menu item is ActionListener

 selected.

AdjustmentEvent Generated when a scroll bar is manipulated. AdjustmentListener

ComponentEvent
Generated when a component is hidden,

ComponentListener
moved, resized, or becomes visible.

ContainerEvent
Generated when a component is added to or

ContainerListener
removed from a container.

FocusEvent
Generated when a component gains or

FocusListener
losses keyboard focus.

InputEvent
Abstract super class for all component input

event classes.

ItemEvent
Generated when a check box or list item is

ItemListener
clicked

KeyEvent
Generated when input is received from the

KeyListener
keyboard.

 Generated when the mouse is dragged,

MouseEvent
moved, clicked, pressed, or released; MouseListener and

also generated when the mouse enters or MouseMotionListener

 exits a component.

TextEvent
Generated when the value of a text area or

TextListener
text field is changed.

 Generated when a window is activated,

WindowEvent closed, deactivated, deiconified, iconified, WindowListener

 opened, or quit.

Useful Methods of Component class:

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height)
sets the size (width and height) of the

component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status)
changes the visibility of the component, by

default false.

4

Unit 4 Event Handling

The ActionEvent Class:
An ActionEvent is generated when a button is pressed, a list item is double-clicked, or

a menu item is selected.

The ActionEvent class defines four integer constants that can be used to identify any

modifiers associated with an action event: ALT_MASK, CTRL_MASK, META_MASK (Ex.

Escape) , and SHIFT_MASK.

ActionEvent has these three constructors:

o ActionEvent(Object src, int type, String cmd)
o ActionEvent(Object src, int type, String cmd, int modifiers)
o ActionEvent(Object src, int type, String cmd, long when, int modifiers)

You can obtain the command name for the invoking ActionEvent object by using

the getActionCommand() method, shown here:
String getActionCommand()

The AdjustmentEvent Class:

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.

BLOCK_DECREMENT
The user clicked inside the scroll bar to decrease its

value.

BLOCK_INCREMENT
The user clicked inside the scroll bar to increase its

value.

TRACK The slider was dragged.

UNIT_DECREMENT
The button at the end of the scroll bar was clicked to

decrease its value.

UNIT_INCREMENT
The button at the end of the scroll bar was clicked to

increase its value.

The ComponentEvent Class:

A ComponentEvent is generated when the size, position, or visibility of a component

is changed. There are four types of component events. The ComponentEvent class defines

integer constants that can be used to identify them:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,

FocusEvent, KeyEvent, MouseEvent, and WindowEvent, among others.

The getComponent() method returns the component that generated the event. It is

shown here:

Component getComponent()

5

Unit 4 Event Handling

The ContainerEvent Class:

A ContainerEvent is generated when a component is added to or removed from a

container. There are two types of container events. The ContainerEvent class defines

constants that can be used to identify them: COMPONENT_ADDED and COMPONENT_REMOVED.

The FocusEvent Class:

A FocusEvent is generated when a component gains or loses input focus. These

events are identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

The InputEvent Class:

The abstract class InputEvent is a subclass of ComponentEvent and is the

superclass for component input events. Its subclasses are KeyEvent and MouseEvent.

InputEvent defines several integer constants that represent any modifiers, such as the

control key being pressed, that might be associated with the event. Originally, the InputEvent

class defined the following eight values to represent the modifiers:

ALT_MASK ALT_GRAPH_MASK BUTTON2_MASK BUTTON3_MASK

BUTTON1_MASK CTRL_MASK META_MASK SHIFT_MASK

However, because of possible conflicts between the modifiers used by keyboard events and

mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK ALT_GRAPH_DOWN_MASK BUTTON1_DOWN_MASK

BUTTON2_DOWN_MASK BUTTON3_DOWN_MASK CTRL_DOWN_MASK

META_DOWN_MASK SHIFT_DOWN_MASK

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of key

events, which are identified by these integer constants: KEY_PRESSED,

KEY_RELEASED, and KEY_TYPED.

The first two events are generated when any key is pressed or released. The last event

occurs only when a character is generated. Remember, not all keypresses result in characters.

For example, pressing shift does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example,

VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers

and letters.

6

Unit 4 Event Handling

The MouseEvent Class:

There are eight types of mouse events. The MouseEvent class defines the following

integer constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse

MOUSE_DRAGGED The user dragged the mouse

MOUSE_ENTERED The mouse entered a component
MOUSE_EXITED The mouse exited from a

 component.

MOUSE_MOVED The mouse moved

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

Two commonly used methods in this class are getX() and getY(). These return the X

and Y coordinates of the mouse within the component when the event occurred. Their forms

are shown here:

int getX()

int getY()

The TextEvent Class:

Instances of this class describe text events. These are generated by text fields and text

areas when characters are entered by a user or program. TextEvent defines the integer

constant TEXT_VALUE_CHANGED.

The WindowEvent Class:

The WindowEvent class defines integer constants that can be used to identify

different types of events:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window was iconified.

WINDOW_ICONIFIED The window gained input focus.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

7

Unit 4 Event Handling

EventListener Interfaces:

An event listener registers with an event source to receive notifications about the

events of a particular type. Various event listener interfaces defined in the java.awt.event

package are given below:

Interface Description
 Defines the actionPerformed() method to receive and process
ActionListener action events.

 void actionPerformed(ActionEvent ae)
 Defines five methods to receive mouse events, such as when a
 mouse is clicked, pressed, released, enters, or exits a component
 void mouseClicked(MouseEvent me)

MouseListener void mouseEntered(MouseEvent me)

 void mouseExited(MouseEvent me)

 void mousePressed(MouseEvent me)

 void mouseReleased(MouseEvent me)
 Defines two methods to receive events, such as when a mouse is

MouseMotionListener
dragged or moved.

void mouseDragged(MouseEvent me)

 void mouseMoved(MouseEvent me)
 Defines the adjustmentValueChanged() method to receive and
AdjustmentListner process the adjustment events.

 void adjustmentValueChanged(AdjustmentEvent ae)
 Defines the textValueChanged() method to receive and process an
TextListener event when the text value changes.

 void textValueChanged(TextEvent te)

 Defines seven window methods to receive events.
 void windowActivated(WindowEvent we)

 void windowClosed(WindowEvent we)

WindowListener
void windowClosing(WindowEvent we)

void windowDeactivated(WindowEvent we)

 void windowDeiconified(WindowEvent we)

 void windowIconified(WindowEvent we)

 void windowOpened(WindowEvent we)

ItemListener
Defines the itemStateChanged() method when an item has been

void itemStateChanged(ItemEvent ie)

 This interface defines two methods: windowGainedFocus() and
 windowLostFocus(). These are called when a window gains or

WindowFocusListener loses input focus. Their general forms are shown here:
 void windowGainedFocus(WindowEvent we)

 void windowLostFocus(WindowEvent we)
 This interface defines four methods that are invoked when a
 component is resized, moved, shown, or hidden. Their general
 forms are shown here:

ComponentListener void componentResized(ComponentEvent ce)
 void componentMoved(ComponentEvent ce)

 void componentShown(ComponentEvent ce)

 void componentHidden(ComponentEvent ce)

 8

 Unit 4 Event Handling

 This interface contains two methods. When a component is added
 to a container, componentAdded() is invoked. When a

 component is removed from a container, componentRemoved()

 ContainerListener is invoked.

 Their general forms are shown here:

 void componentAdded(ContainerEvent ce)

 void componentRemoved(ContainerEvent ce)
 This interface defines two methods. When a component obtains

 keyboard focus, focusGained() is invoked. When a component

FocusListener

loses keyboard focus, focusLost() is called. Their general forms
 are shown here:

 void focusGained(FocusEvent fe)

 void focusLost(FocusEvent fe)
 This interface defines three methods.

KeyListener

void keyPressed(KeyEvent ke)
 void keyReleased(KeyEvent ke)

 void keyTyped(KeyEvent ke)

Steps to perform Event Handling

Following steps are required to perform event handling:

1. Register the component with the Listener
2. Implement the concerned interface

Registration Methods:

For registering the component with the Listener, many classes provide the registration

methods. For example:

Button
o public void addActionListener(ActionListener a){}

MenuItem

o public void addActionListener(ActionListener a){}

TextField

o public void addActionListener(ActionListener a){}

o public void addTextListener(TextListener a){}

TextArea

o public void addTextListener(TextListener a){}

Checkbox

o public void addItemListener(ItemListener a){}

Choice

o public void addItemListener(ItemListener a){}

List

o public void addActionListener(ActionListener a){}

o public void addItemListener(ItemListener a){}

Mouse

o public void addMouseListener(MouseListener a){}

9

Unit 4 Event Handling

Handling Mouse Events Example Program:

// Demonstrate the mouse event handlers.

import java.awt.*;
import java.awt.event.*;

import java.applet.*; /*

<applet code="MouseEvents" width=300

height=100> </applet>

*/
public class MouseEvents extends Applet implements MouseListener, MouseMotionListener
{

String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse

public void init()

{
addMouseListener(this);
addMouseMotionListener(this);

}

// Handle mouse clicked.
public void mouseClicked(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse

clicked."; repaint();

}
// Handle mouse entered.

public void mouseEntered(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;
msg = "Mouse entered.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me)

{
// save coordinates

mouseX = 0;

mouseY = 10;

msg = "Mouse exited.";

repaint();

}
// Handle button pressed.

public void mousePressed(MouseEvent me)

{
// save coordinates

mouseX = me.getX();
10

Unit 4 Event Handling

mouseY = me.getY();
msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me)

{

// save coordinates

mouseX =

me.getX(); mouseY

= me.getY(); msg =

"Up"; repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me)

{
// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "*";
showStatus("Dragging mouse at " + mouseX + ", " +

mouseY); repaint();

}
// Handle mouse moved.

public void mouseMoved(MouseEvent me)

{

// show status

showStatus("Moving mouse at " + me.getX() + ", " + me.getY());

}

// Display msg in applet window at current X,Y

location. public void paint(Graphics g)

{
g.drawString(msg, mouseX, mouseY);

}

}

Output:

11

Unit 4 Event Handling

Handling Key Board Events:

// Demonstrate the key event handlers.

import java.awt.*;
import java.awt.event.*;

import java.applet.*; /*

<applet code="SampleKey" width=300 height=100>

</applet>

*/
public class SampleKey extends Applet implements KeyListener
{

String msg = "";

public void init() {
addKeyListener(this);

}

public void keyPressed(KeyEvent ke) {

showStatus("Key Down");

}
public void keyReleased(KeyEvent ke) {

showStatus("Key Up");

}

public void keyTyped(KeyEvent ke) {

msg += ke.getKeyChar();

repaint();

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, 10, 20);

}

}

Output:

12

Unit 4 Event Handling

Handling Action Event Example:

import java.awt.*;
import java.applet.*;

import java.awt.event.*;

/*

<applet code="ButtonEvent3" width=300 height=100>

</applet>

*/

public class ButtonEvent3 extends Applet implements ActionListener

{

Button a ;

String msg;

public void init()

{

a=new Button("PVPSIT");

add(a);

a.addActionListener(this);
}

public void actionPerformed(ActionEvent ae)

{

String str=ae.getActionCommand();

if(str.equals("PVPSIT"))

msg="You pressed PVPSIT";

repaint();

}
public void paint(Graphics g)

{

g.drawString(msg,100,100);

}
}

Output:

13

Unit 4 Event Handling

Adapter Classes:

Java provides a special feature, called an adapter class, that can simplify the creation

of event handlers in certain situations. An adapter class provides an empty implementation of

all methods in an event listener interface. Adapter classes are useful when you want to receive

and process only some of the events that are handled by a particular event listener interface.

For example,

MouseListener MouseAdapter
void mouseClicked(MouseEvent me) void mouseClicked(MouseEvent me){ }
void mouseEntered(MouseEvent me) void mouseEntered(MouseEvent me) { }

void mouseExited(MouseEvent me) void mouseExited(MouseEvent me) { }

void mousePressed(MouseEvent me) void mousePressed(MouseEvent me) { }

void mouseReleased(MouseEvent me) void mouseReleased(MouseEvent me) { }

Table: Commonly used Listener Interfaces implemented by Adapter Classes

Adapter Class Listener Interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Example:

import java.awt.*;
import java.awt.event.*;

import java.applet.*;

/*

<applet code="AdapterDemo" width=300 height=100>

</applet>

*/

public class AdapterDemo extends Applet

{

public void init() {

addMouseListener(new MyMouseAdapter(this));

}
}

class MyMouseAdapter extends MouseAdapter

{

AdapterDemo ad;

public MyMouseAdapter(AdapterDemo ad)

{

this.ad = ad;

14

Unit 4 Event Handling

}
// Handle mouse clicked.

public void mouseClicked(MouseEvent me)

{

ad.showStatus("Mouse clicked");

}

}

Inner Classes:

Inner class is a class defined within another class, or even within an expression.

Example:

import java.awt.*;
import java.awt.event.*;

import java.applet.*;

/*

<applet code="InnerClassDemo" width=300 height=100>

</applet>

*/

public class InnerClassDemo extends Applet

{

String msg = "hello";

public void init() {
addKeyListener(new MyKeyIn());

}

class MyKeyIn extends KeyAdapter

{

public void keyPressed(KeyEvent ke) {

showStatus("Key Pressed");

}

}

public void paint(Graphics g) {
g.drawString(msg, 10, 20);

}

}

Anonymous Inner Classes:

An anonymous inner class is one that is not assigned a name.

Example:
import java.awt.*;

import java.awt.event.*;
import java.applet.*;

/*

<applet code="AInnerClassDemo" width=300 height=100>

</applet> */

15

Unit 4 Event Handling

public class AInnerClassDemo extends Applet
{

String msg = "hello";

public void init()

{

addKeyListener(new KeyAdapter(){

public void keyPressed(KeyEvent ke) {

showStatus("Key Pressed");

}

});

}

// Display keystrokes.

public void paint(Graphics g) {

g.drawString(msg, 10, 20);

}

}

Control Fundamentals:

The AWT supports the following types of controls:

Labels
Push buttons

Check boxes

Choice lists

Lists
Scroll bars

Text Editing

These controls are subclasses of Component

Adding and Removing Controls: To include a control in a window, you must add it to the

window. To do this, you must first create an instance of the desired control and then add it to

a window by calling add(), which is defined by Container. The General form is:

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to compObj

is returned.

Sometimes you will want to remove a control from a window when the control is no

longer needed. To do this, call remove(). This method is also defined by Container. Here is

one of its forms:
void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls by

calling removeAll().

The HeadlessException:

Most of the AWT controls have constructors that can throw a HeadlessException

when an attempt is made to instantiate a GUI component in a non-interactive environment

(such as one in which no display, mouse, or keyboard is present).

16

Unit 4 Event Handling

Labels:
A label is an object of type Label, and it contains a string, which it displays. Labels

are passive controls that do not support any interaction with the user. Label defines the

following constructors:
Label() throws HeadlessException Label(String str)

throws HeadlessException Label(String str, int how)

throws HeadlessException

The first version creates a blank label. The second version creates a label that contains the

string specified by str. This string is left-justified. The third version creates a label that contains

the string specified by str using the alignment specified by how. The value of how must be one of

these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

Using Buttons:

A push button is a component that contains a label and that generates an event when

it is pressed. Push buttons are objects of type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains

str as a label.

After a button has been created, you can set its label by calling setLabel(). You

can retrieve its label by calling getLabel(). These methods are as follows:
void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button

Example:
import java.awt.*;

import java.applet.*;

import java.awt.event.*;

/*

<applet code="ButtonEvent1" width=300 height=100>

</applet>

*/

public class ButtonEvent1 extends Applet

{

Button b,b1;

public void init()

{

b=new Button("PVPSIT");

b1=new Button();

add(b);

add(b1);

} }

17

Unit 4 Event Handling

Check Boxes:

A check box is a control that is used to turn an option on or off. It consists of a small

box that can either contain a check mark or not. There is a label associated with each check

box that describes what option the box represents. Check boxes can be used individually or as

part of a group. Check boxes are objects of the Checkbox class.

Checkbox supports these constructors: Checkbox() throws

HeadlessException Checkbox(String str) throws

HeadlessException Checkbox(String str, boolean on)

throws HeadlessException

Checkbox(String str, boolean on, CheckboxGroup cbGroup) throws HeadlessException

Checkbox(String str, CheckboxGroup cbGroup, boolean on) throws HeadlessException

The first form creates a check box whose label is initially blank. The state of the

check box is unchecked. The second form creates a check box whose label is specified by str.

The state of the check box is unchecked. The third form allows you to set the initial state of

the check box. If on is true, the check box is initially checked; otherwise, it is cleared. The

fourth and fifth forms create a check box whose label is specified by str and whose group is

specified by cbGroup. If this check box is not part of a group, then cbGroup must be null.

The value of on determines the initial state of the check box.

Methods:

boolean getState() - To retrieve the current state of a check box

void setState(boolean on) - to set the state of a check box String

getLabel() – returns the label associated with check box void

setLabel(String str) – to set the label

Example:
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CheckboxDemo" width=240 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener

{

String msg = "";

Checkbox m,f;

public void init()

{

m = new Checkbox("Male", true);

f = new Checkbox("Female");

add(m);

add(f);

18

Unit 4 Event Handling

m.addItemListener(this);

f.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {
msg = "Current state: ";

g.drawString(msg, 6, 80); msg

= " Male: " + m.getState();

g.drawString(msg, 6, 100);

msg = " Female: " + f.getState();

g.drawString(msg, 6, 150);

}

}

CheckboxGroup:
It is possible to create a set of mutually exclusive check boxes in which one and only

one check box in the group can be checked at any one time. These check boxes are often

called radio buttons —only one button can be selected at any one time.

To create a set of mutually exclusive check boxes, you must first define the group to

which they will belong and then specify that group when you construct the check boxes.

Check box groups are objects of type CheckboxGroup.

Only the default constructor is defined, which creates an empty group.

Methods:
Checkbox getSelectedCheckbox() - which check box in a group is currently selected void

setSelectedCheckbox(Checkbox which) - which is the check box that you want to

be selected. The previously selected check box will be turned off

Example:
import java.awt.event.*;

import java.applet.*;

/*

<applet code="CBGroup" width=240 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener

{

String msg = "";

Checkbox m,f;

19

Unit 4 Event Handling

CheckboxGroup cbg;

public void init()

{
cbg = new CheckboxGroup();

m = new Checkbox("Male", cbg, true); f

= new Checkbox("Female", cbg, false);

add(m);

add(f);

m.addItemListener(this);

f.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g)
{

msg = "Current selection: ";
msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100);

}

}

Choice Controls:

The Choice class is used to create a pop-up list of items from which the user may

choose. Choice defines only the default constructor, which creates an empty list. To add a

selection to the list, call add(). It has this general form:

void add(String name) - name is the name of the item being added.

Items are added to the list in the order in which calls to add() occur.

Methods:

String getSelectedItem() – returns the item which is currently selected
int getSelectedIndex() - returns the index of the item. The first item is at index 0. By

default, the first item added to the list is selected.

int getItemCount() – returns number of items in the list
void select(int index) - to set the currently selected item with index void

select(String name) - to set the currently selected item with a string

String getItem(int index) – returns the name associated with the index

Example:
import java.awt.*;

import java.awt.event.*;

20

Unit 4 Event Handling

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300

height=180> </applet>

*/

public class ChoiceDemo extends Applet implements ItemListener

{

Choice college ;
String msg = "";

public void init()

{

college = new Choice();

// add items to os list

college.add("PVPSIT");

college.add("BEC");

college.add("RVR&JC");

college.add("VRSEC");

add(college);

// register to receive item events

college.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current selections.

public void paint(Graphics g)
{

msg = "Selected College is: ";

msg += college.getSelectedItem();

g.drawString(msg, 6, 120);
}

}

List:
The List class provides a compact, multiple-choice, scrolling selection list. Unlike the

Choice object, which shows only the single selected item in the menu, a List object can be

constructed to show any number of choices in the visible window. It can also be created to

allow multiple selections.

List provides these constructors:

List() throws HeadlessException

21

Unit 4 Event Handling

List(int numRows) throws HeadlessException

List(int numRows, boolean multipleSelect) throws HeadlessException

The first version creates a List control that allows only one item to be selected at any

one time. In the second form, the value of numRows specifies the number of entries in the list

that will always be visible (others can be scrolled into view as needed). In the third form, if

multipleSelect is true, then the user may select two or more items at a time. If it is false, then

only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)

void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the

end of the list. The second form adds the item at the index specified by index. Indexing

begins at zero. You can specify –1 to add the item to the end of the list.

Example:

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener

{

List college;
String msg = "";

public void init()

{

college = new List(4,true);

college.add("PVPSIT");

college.add("BEC");

college.add("RVR&JC");

college.add("VRSEC");

//college.select(1);

add(college);

// register to receive action events

college.addActionListener(this);
}

public void actionPerformed(ActionEvent ae) {

repaint();

}

22

Unit 4 Event Handling

// Display current selections.

public void paint(Graphics g)
{

msg="College Chosen is:";

int ind[];

ind = college.getSelectedIndexes();

for(int i=0; i<ind.length; i++)

msg += college.getItem(ind[i]) + " ";

g.drawString(msg, 6, 120);

}

}

TextField:

The TextField class implements a single-line text-entry area. Text fields allow the

user to enter strings and to edit the text using the arrow keys, cut and paste keys, and mouse

selections.

TextField is a subclass of TextComponent. TextField defines the following

constructors:

TextField() throws HeadlessException TextField(int

numChars) throws HeadlessException TextField(String str)

throws HeadlessException TextField(String str, int numChars)

throws HeadlessException

The first version creates a default text field. The second form creates a text field that

is numChars characters wide. The third form initializes the text field with the string contained

in str. The fourth form initializes a text field and sets its width.

Methods:

String getText() - To obtain the string currently contained in the text

field void setText(String str) - To set the text, here, str is the new string.

String getSelectedText() - returns currently selected text

void select(int startIndex, int endIndex) - selects the characters beginning at

startIndex and ending at endIndex –1.

boolean isEditable() – returns boolean value (true/false)

void setEditable(boolean canEdit) - if canEdit is true, the text may be changed. If it

is false, the text cannot be altered.

void setEchoChar(char ch) – specified echo character will be displayed in TextField

boolean echoCharIsSet() –returns true or false

char getEchoChar() – returns the echo character

23

Unit 4 Event Handling

Example:
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet implements TextListener

{

TextField name, pass;

public void init()

{

Label namep = new Label("Name: ");

name = new TextField(12);

Label passp = new Label("Password: ");

pass = new TextField(8);

pass.setEchoChar('*');

add(namep);

add(name);

add(passp);

add(pass);

// register to receive action events

name.addTextListener(this);

pass.addTextListener(this);

}

// User pressed Enter.

public void textValueChanged(TextEvent ae)

{

repaint();

}

public void paint(Graphics g)

{

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Password: " + pass.getText(), 6, 100);

g.drawString("Selected text in name: "+ name.getSelectedText(), 6, 80);

}

}

24

Unit 4 Event Handling

TextArea:

Sometimes a single line of text input is not enough for a given task. To handle these

situations, the AWT includes a simple multiline editor called TextArea. Following are the

constructors for TextArea:

TextArea() throws HeadlessException
TextArea(int numLines, int numChars) throws HeadlessException

TextArea(String str) throws HeadlessException

TextArea(String str, int numLines, int numChars) throws HeadlessException

TextArea(String str, int numLines, int numChars, int sBars) throws

HeadlessException

Here, numLines specifies the height, in lines, of the text area, and numChars specifies

its width, in characters. Initial text can be specified by str. In the fifth form, you can specify

the scroll bars that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH

SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY

SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(),

setText(), getSelectedText(), select(), isEditable(), and setEditable() methods described

in the preceding section.

TextArea adds the following methods:

void append(String str) - appends the string specified by str to the end

of the current void insert(String str, int index) - inserts the string

passed in str at the specified index void replaceRange(String str, int

startIndex, int endIndex) - replaces the characters from startIndex to

endIndex–1, with the replacement text passed in str

Example:

import java.awt.*;

import java.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250>

</applet>

*/

public class TextAreaDemo extends Applet

{

public void init()

{

String val = "Java 7 is the latest version of the most widely-used computer

language for Internet programming.";

TextArea text = new TextArea(val, 10, 30);

add(text);

}

}

25

Unit 4 Event Handling

Managing Scroll Bars:

Scrollbar control represents a scroll bar component in order to enable user to select

from range of values.

Scroll bars are encapsulated by the Scrollbar class. Scrollbar defines the following

constructors:

Scrollbar() throws HeadlessException
Scrollbar(int style) throws HeadlessException

Scrollbar(int style, int initialValue, int thumbSize, int min, int max) throws

HeadlessException

The first form creates a vertical scroll bar. The second and third forms allow you to

specify the orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar

is created. If style is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form

of the constructor, the initial value of the scroll bar is passed in initialValue. The number of

units represented by the height of the thumb is passed in thumbSize. The minimum and

maximum values for the scroll bar are specified by min and max.

Methods:

void setValues(int initialValue, If we construct a scroll bar by using one of the

int thumbSize, int min, int max) first two constructors, then you need to set its

 parameters by using setValues()

int getValue() To get the current value

void setValue(int newValue) TO set the current value

int getMinimum() To get the minimum value

int getMaximum() To get the maximum value

Example:
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*
<applet code="SBDemo" width=300 height=200>

</applet>

*/
public class SBDemo extends Applet

{

Scrollbar vertSB, horzSB;

public void init()
{

vertSB = new Scrollbar(Scrollbar.VERTICAL, 0, 1, 0, 100);

horzSB = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, 100);

add(vertSB);

add(horzSB);

}

}

26

Unit 4 Event Handling

Layout Manager

A layout manager is a class that is useful to arrange components in a particular

manner in container or a frame.

Java soft people have created a LayoutManager interface in java.awt package which is

implemented in various classes which provide various types of layouts to arrange the

components. The following classes represents the layout managers in Java:

1. FlowLayout
2. BorderLayout
3. GridLayout
4. CardLayout
5. GridBagLayout
6. BoxLayout

To set a particular layout, we should first create an object to the layout class and pass

the object to setLayout() method. For example, to set FlowLayout to the container:

FlowLayout obj=new FlowLayout();

c. setLayout(obj); // assume c is container

FlowLayout:

FlowLayout is useful to arrange the components in a line one after the other. When a

line is filled with components, they are automatically placed in a next line. This is the default

layout in applets.

Constructors:
FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centres components and leaves five

pixels of space between each component. The second form lets you specify how each line is

aligned. Valid values for how are as follows:
FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

The third constructor allows you to specify the horizontal and vertical space left

between components in horz and vert, respectively.

Example:
import java.awt.*;
import java.awt.event.*;

import java.applet.*;

/*

<applet code="FlowLayoutDemo" width=240

height=200>

</applet>

*/
27

Unit 4 Event Handling

public class FlowLayoutDemo extends Applet implements ItemListener

{

String msg="";

Checkbox m,f;

public void init()

{
setLayout(new FlowLayout(FlowLayout.RIGHT));

m = new Checkbox("Male", true); f = new

Checkbox("Female");
add(m);
add(f);

m.addItemListener(this);
f.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie)

{

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";

g.drawString(msg, 6, 80); msg

= " Male: " + m.getState();

g.drawString(msg, 6, 100);

msg = " Female: " + f.getState();
g.drawString(msg, 6, 150);

}

}

(or)
/*
<applet code="FlowLayoutDemo" width=240 height=200>

</applet> */

public class FlowLayoutDemo extends Applet

{

Checkbox m,f;

public void init()

{

setLayout(new

FlowLayout(FlowLayout.RIGHT));
m = new Checkbox("Male", true);

f = new Checkbox("Female");

add(m);
add(f);

}
}

28

Unit 4 Event Handling

BorderLayout:

BorderLayout is useful to arrange the components in the four borders of the frame as

well as in the centre. The borders are identified with the names of the directions. The top

border is specified as ‘North’, the right side border as ‘East’, the bottom one as ‘South’ and

the left one as ‘West’. The centre is represented as ‘Centre’.

Constructors:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively.

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER

BorderLayout.SOUTH

BorderLayout.EAST

BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of

add(), which is defined by Container:

void add(Component compObj, Object region)

Here, compObj is the component to be added, and region specifies where the component

will be added.

Example:
import java.applet.*;

import java.util.*;

/*

<applet code="BorderLayoutDemo" width=400 height=200>

</applet>
*/

public class BorderLayoutDemo extends

Applet

{

public void init()

{

setLayout(new BorderLayout());

add(new Button("Top"),BorderLayout.NORTH);

add(new Button("Bottom"),BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "PVPSIT started by SAGTE in 1998.\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

}

29

Unit 4 Event Handling

GridLayout:
GridLayout is useful to divide the container into a 2D grid form that contains several

rows and columns. The container is divided into equal-sized rectangle; and one component is

placed in each rectangle.

Constructors:
GridLayout()
GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid

layout with the specified number of rows and columns. The third form allows you to specify

the horizontal and vertical space left between components in horz and vert, respectively.

Either numRows or numColumns can be zero. Specifying numRows as zero allows for

unlimitedlength columns. Specifying numColumns as zero allows for unlimited-length rows.

Example:

import java.awt.*;
import java.applet.*;

/*

<applet code="GridLayoutDemo2" width=150 height=150>

</applet>

*/

public class GridLayoutDemo2 extends Applet

{

Button b1,b2,b3,b4;

public void init()

{

setLayout(new GridLayout(2, 2));

b1=new Button("PVP");

b2=new Button("BEC");

b3=new Button("VRSEC");

b4=new Button("RVR&JC");

add(b1);

add(b2);

add(b3);

add(b4);

}

}

or
import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

30

Unit 4 Event Handling

</applet>
*/

public class GridLayoutDemo extends Applet

{

static final int n = 4;

public void init() {

setLayout(new GridLayout(n, n));

for(int i = 0; i < n; i++) { for(int

j = 0; j < n; j++) {

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

CardLayout:

A CardLayout object is a layout manager which treats each component as a card.

Only one card is displayed at a time, and the container acts as a stack of cards. The first

component added to a CardLayout object is visible component when the container is first

displayed.

CardLayout provides these two constructors:

CardLayout()
CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify

the horizontal and vertical space left between components in horz and vert, respectively.

Use of a card layout requires a bit more work than the other layouts. The cards are

typically held in an object of type Panel. This panel must have CardLayout selected as its

layout manager. Finally, you add this pane to the window.
Once these steps are complete, you must provide some way for the user to select

between cards. One common approach is to include one push button for each card in the deck.

When card panels are added to a panel, they are usually given a name. Thus, most of the time,

you will use this form of add() when adding cards to a panel:

void add(Component panelObj, Object name)

or

void add(Object name, Component panelObj)

Here, name is a string that specifies the name of the card whose panel is specified by

panelObj. After you have created a deck, your program activates a card by calling one of the

following methods defined by CardLayout:
void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

31

Unit 4 Event Handling

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CardLayoutDemo" width=300 height=100>

</applet>

*/

public class CardLayoutDemo extends Applet implements ActionListener

{

Button b1,b2,b3,b4;

Panel p;

CardLayout card;

public void init()

{

b1 = new Button("Button 1");

b2 = new Button("Button 2");

b3 = new Button("Button 3");

b4 = new Button("Button 4");

p=new Panel();

card=new CardLayout(20,20);

p.setLayout(card);

p.add("First",b1);

p.add("Second",b2);

p.add("Third",b3);

p.add("Fourth",b4);

b1.addActionListener(this);

b2.addActionListener(this);

b3.addActionListener(this);

b4.addActionListener(this);

add(p);

}

public void actionPerformed(ActionEvent ae)

{

card.next(p);

}

}

GridBagLayout:

A GridBagLayout class represents grid bag layout manager where the components are

arranged in rows and columns. In this layout the component can span more than one row or

column and the size of the component can be adjusted to fit the display area.

32

Unit 4 Event Handling

When positioning the components by using grid bag layout, it is necessary to apply

some constraints or conditions on the components regarding their position, size and place in

or around the components etc. Such constraints are specified using GridBagConstrinats class.

In order to create GridBagLayout, we first instantiate the GridBagLayout class by

using its only no-argument constructor

GridBagLayout layout=new GridBagLayout();

setLayout(layout);

and defining it as the current layout manager.

To apply constraints on the components, we should first create an object to

GridBagConstrinats class, as

GridBagConstrinats gbc =new GridBagConstrinats();

This will create constraints for the components with default value. The other way to

specify the constraints is by directly passing their values while creating the

GridBagConstrinats as

GridBagConstrinats gbc= new GridBagConstrinats(

int gridx, int gridy, int gridwidth, int gridheight, double weightx, double

weighty, int anchor, int fill, Insets insets, int ipadx, int ipady);

To set the constraints use setConstraints() method in GridBagConstrinats class and its

prototype

void setConstraints(Component comp, GridBagConstraints cons);

Constraint fields Defined by GridBagConstraints:

Field Purpose

 Specifies the location of a component within a cell. The

 default is GridBagConstraints.CENTER. Others are

 GridBagConstraints.EAST

 GridBagConstraints.WEST

int anchor
 GridBagConstraints.SOUTH

 GridBagConstraints.NORTH

 GridBagConstraints.NORTHEAST

 GridBagConstraints.NORTHWEST

 GridBagConstraints.SOUTHEAST

 GridBagConstraints.SOUTHWEST

int gridx
Specifies the X coordinate of the cell to which the

component will be added.

int gridy
Specifies the Y coordinate of the cell to which the

component will be added.

int gridheight
Specifies the height of component in terms of cells. The

default is 1.

int gridwidth
Specifies the width of component in terms of cells. The

default is 1.

double weightx Specifies a weight value that determines the horizontal

33

Unit 4 Event Handling

 spacing between cells and the edges of the container that
 holds them. The default value is 0.0. The greater the weight,

 the more space that is allocated.
 Specifies a weight value that determines the vertical spacing

 double weighty between cells and the edges of the container that holds them.

 The default value is 0.0.
 Specifies extra horizontal space that surrounds a component

 within a cell. The default is 0.

int ipadx

int ipady
Specifies extra vertical space that surrounds a component

within a cell. The default is 0.

 Specifies how a component is resized if the component is

 smaller than its cell. Valid values are

int fill
 GridBagConstraints.NONE (the default)

 GridBagConstraints.HORIZONTAL

 GridBagConstraints.VERTICAL

 GridBagConstraints.BOTH.
 Small amount of space between the container that holds
 your components and the window that contains it. Default

 insets are all zero.

 Ex. Insets i=new Insets(5,10,20,15);

Insets insets

Example:

import java.awt.*;
import java.awt.event.*;

import java.applet.*;

/*

<applet code="GridBagDemo" width=200 height=100>

</applet>

*/

public class GridBagDemo extends Applet

{

Button b1,b2,b3,b4,b5,b6,b7,b8 ;

public void init() {

34

Unit 4 Event Handling

GridBagLayout gbag = new GridBagLayout();

GridBagConstraints gbc = new GridBagConstraints();

setLayout(gbag);

// Define check boxes.

b1=new Button("Button 1");

b2=new Button("Button 2");

b3=new Button("Button 3");

b4=new Button("Button 4");

b5=new Button("Button 5");

b6=new Button("Button 6");

b7=new Button("Button 7");

b8=new Button("Button 8");

gbc.gridx=0;
gbc.gridy=0;

gbag.setConstraints(b1,gbc);

gbc.gridx=1;

gbc.gridy=0;

gbag.setConstraints(b2,gbc);

gbc.gridx=2;

gbc.gridy=0;

gbag.setConstraints(b3,gbc);

gbc.gridx=0;

gbc.gridy=1;

gbag.setConstraints(b4,gbc);

gbc.gridx=1;

gbc.gridy=1;

gbc.gridwidth=2;

gbc.gridheight=2;

gbc.ipady=25;

gbc.ipadx=20;

gbc.fill=GridBagConstraints.BOTH;

gbag.setConstraints(b5,gbc);

gbc.gridx=0;

gbc.gridy=2;

gbc.anchor=GridBagConstraints.WEST;

gbc.ipady= 0;

gbc.ipadx= 0;

gbc.fill=GridBagConstraints.NONE;

gbag.setConstraints(b7,gbc);

add(b1);

add(b2);

add(b3);

add(b4);

add(b5);

add(b7);

}
}

35

